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Abstract: To improve the energy, operational, and ecological efficiency of a district heating system
(DHS) powered by a combined heat and power (CHP) plant or a heating plant, thermal energy
storage (TES) should be used. The presented paper examines the impact of the use and operation of
TES built in a CHP plant supplying a large DHS, based on the amount of particulates emitted into the
atmosphere. Detailed research was carried out for the Siekierki–Warsaw and Białystok CHP plants in
Poland. The analysis helped to determine the factors affecting the reduction in pollutant emissions
and the volume of the energy effect of using TES in the CHP plant. In order to objectify the results
of the comparative analysis of the impact of TES in the CHP plant on the emission of particulates,
the so-called comparative index (CI) was introduced. The CI takes into account the volume of
electricity and heat production and climatic conditions in the analyzed time periods. The CI for the
analyzed years should have a similar value so that the results of the comparative analysis are fully
representative. This condition is met for the CHP plant and DHS of Białystok, so the detailed results
of the analysis are presented for this facility. As a result of the application of TES in the Białystok
CHP plant, significant environmental effects related to the reduction in particulate emissions have
been achieved; for example, the total amount of annual particulate matter (PM) emission (PM10 and
PM2.5) has been reduced by 27% and the maximum emission by 29%. On the other hand, the average
decrease in particulate emissions in the heating season varied in the range of 10–50%, while in the
summer season, the values of particulate emissions were at a comparable level. A significant decrease
in annual and one-hour average concentrations for PM10 and PM2.5 and particulate fallout for these
two analyzed years was also found. The use of TES to reduce the occurrence and nuisance of the
smog phenomenon, the main components of which are PM, is proposed, and selected models of
forecasting concentrations of pollutants in the air, including particulate emissions, are presented in
order to implement this type of activity.

Keywords: thermal energy storage; combined heat and power plant; district heating system;
particulate emissions into the atmosphere; smog phenomenon

1. Introduction

The use of thermal energy storage (TES) in a district heating system (DHS) enables
effective operation of the energy source; i.e., it allows for stable operation of generating
units (boilers, turbine sets) with high efficiency and reduces the number of peak-load
boiler start-ups to a minimum. TES also enables the integration and more efficient use of
renewable energy sources, especially weather-dependent ones, as well as waste heat from
various technological processes [1–3]. Thus, the implementation of TES technology in a
DHS offers great opportunities to improve the operating conditions of heating systems as
well as the economics of heat and electricity production (by increasing heat production in
cogeneration and increasing electricity production in periods when its prices are high), as
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well as reducing emissions of pollutants into the atmosphere and increasing the security of
the energy supply to consumers [4,5].

In addition, with a view to protecting human health and the environment as a whole,
it is particularly important to combat emissions of pollutants at their source and to identify
and implement at local, national, and EU levels the most effective measures to reduce
pollutant emissions, i.e., to prevent or reduce emissions of harmful air pollutants and to set
appropriate air quality targets, taking into account appropriate standards, guidelines, and
programs of the World Health Organization (WHO).

The impact of the use of TES in DHSs on the state of the natural environment, and
in particular the amount of emissions into the atmosphere of gaseous pollutants and
particulate matter (PM) generated during the combustion of fuels in CHP plants, has not
been the subject of many studies and scientific publications so far. A number of scientific
publications indicate the obtained (or achievable) energy, operational, and economic effects
in the studied district or industrial heating system after the installation of TES [6–9]. These
energy, operational, and economic effects are obvious due to more stable and even operation
in terms of thermal and electrical power of generating units, the possibility of avoiding the
operation or limiting the operating time of peak-load boilers, or increasing the production
of electricity generated in cogeneration [10,11]. For example, the authors of the study [8]
indicate for the analyzed DHS of the city of Turin that after the installation of the TES, the
energy effects obtained in the form of reduced fuel consumption amounted to 12%, and the
total costs of energy generation decreased by 5%.

The ecological effects of the use of TES in district and industrial heating systems were
most often studied in terms of reducing CO2 emissions [12–14], and only a few studies
indicated a reduction in the emission of gaseous pollutants into the atmosphere, such as
SO2, NOx, CO, and particulates obtained after the installation of TES [2,15,16].

Bogdan and Kopiar [17] determined the amount of reduction in CO2 and SO2 emissions
as a result of the installation of TES in a CHP plant using in the calculations the amount of
fuel saved and unit emission factors for the year in which the CHP plant operated without
the TES and with the TES. The calculations resulted in a reduction in annual CO2 emissions
of 6.4% and SO2 of 16.9%.

Denholm and Holloway [15] determined the ecological effect in the form of the ex-
pected reduction in gaseous pollutants, i.e., CO2 SO2, and NOx, after the use of energy
storage in the form of compressed air tanks for the Norton Energy Company. The results of
the calculations are presented in the form of a reduction in the emission factors of these
pollutants for the state before and after the installation of energy storage facilities (Table 1).

Table 1. Emissions of CO2, SO2, and NOx for the state before and after the installation of TES facilities.

Before After Unit

CO2 950 825 kg CO2/MWh
SO2 0.6 0.4 kg SO2/MWh
NOx 0.4 0.3 kg NOx/MWh

Independent studies conducted for five different TES installations in California, Texas,
and Wisconsin, and presented in [16], showed a significant reduction in the emission of
gaseous pollutants, i.e., SO2 and NOx at the level of 5–29%, and CO2 in the range of 5–24%.

However, all the above-mentioned works did not contain a research methodology,
and the environmental effects obtained, i.e., reductions in the emission pollutants, resulted
from a simple comparison of the emission of these pollutants generated before and after the
installation of the TES in the energy system under consideration, or were calculated as the
result of fuel savings, using standard emission indicators of individual gaseous pollutants
for a given type fuel burned. In none of these cases, in the analysis of the ecological effects
resulting from the installation of TES in an energy source (e.g., CHP plant), was it taken into
account whether the analyzed years before and after the installation of TES in a CHP plant
are similar, for example, in terms of the amount of energy generated in this energy source,
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or whether they are similar in terms of climatic conditions (e.g., whether the analyzed years
have a similar number of degree days). Thus, the results of reducing gaseous pollutants
obtained by this method are not fully reliable.

2. Emission of PM into the Atmosphere and the Problem of Smog

The basic gaseous and particulate pollutants introduced into the atmosphere during
combustion processes are CO2, SO2, NOx, CO, and PM. Of course, primary particulate
emissions, i.e., from natural and anthropogenic sources, and secondary emissions are of
key importance for the formation of the smog phenomenon.

The problem of smog in the world is a serious environmental issue that has a significant
impact on people’s lives. Smog is a type of air pollution that is formed as a result of the
combination of various substances emitted into the atmosphere, mainly by industrial
activities, burning fossil fuels in the energy sector and transport. There are also natural
sources of smog formation, e.g., as a result of volcanic eruptions. Depending on the
components and conditions causing smog, there are two main types: London smog and
photochemical smog. London smog occurs in Europe. It is most often formed as a result
of the release of products of coal combustion and other fossil fuels into the atmosphere.
These are sulfur oxides, nitrogen oxides, PM, and soot. The most dangerous component of
smog is particulate aerosol with a diameter not exceeding 2.5 µm (PM2.5), which includes
inorganic and organic compounds. Particulates with such a small particle size can easily
enter the lungs and blood of humans, causing respiratory and cardiovascular diseases [18].
Smog occurs in winter periods, especially in conditions of low outside air temperature.
Additional conditions conducive to the formation of London smog are low wind speed,
high air humidity, and geographical location of cities, e.g., in valleys.

For obvious reasons, this paper deals with the emission of particulates from anthro-
pogenic sources (in this case CHP plants) and, in a sense, secondary emission, resulting
from transformations and reactions occurring in the atmosphere.

In total suspended particulates (TSP), the following PM fractions are distinguished, as
shown in Table 2:

Table 2. Characteristic of PM fractions.

PM10 fine PM (d < 10 µm)
PMc intermediate fine PM (2.5 µm < d < 10 µm)

PM2.5 very fine PM (d < 2.5 µm)
PM1 submicron PM (d < 1 µm)

PM0.1 ultrafine PM (d < 0.1 µm)

It should be emphasized that air quality monitoring stations in Poland, in terms of PM
concentration, transmit TSP, PM10, and PM2.5 values to the National Centre for Emissions
Management (KOBiZE) [19].

Anthropogenic particulate emissions are mainly associated with fuel combustion
processes. In the paper [20], five categories of PM emission sources were distinguished, i.e.:

1. Professional power engineering,
2. Industrial power engineering,
3. Industrial technologies,
4. Other stationary sources (local boilers, domestic boilers, agriculture, etc.),
5. Mobile sources.

The annual emissions of PM, including anthropogenic particulates, in Poland in
individual sectors of the economy in the years 1990–2020 are presented in Table 3 [21].

On the other hand, for the energy sector, the amount of particulate emissions resulting
from fuel combustion and fugitive emissions from fuels is presented in Table 4.
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Table 3. Annual emission of particulates, including anthropogenic particulates, in Poland in
1990–2020.

Emission Source by NFR Category Particulate Emissions Amount [Gg·a−1]

Year 1990 2010 2020

Anthropogenic Particulates TSP PM10 PM2.5 TSP PM10 PM2.5 TSP PM10 PM2.5

Sector
Energy 1110.0 796.7 510.1 470.9 415.1 353.1 313.0 276.6 238.4

Industrial processes 142.4 91.3 41.9 73.9 27.4 8.3 80.7 29.6 8.3
Agriculture 66.8 39.0 4.7 47.2 26.2 2.8 50.7 29.6 3.3

Waste (open incineration,
waste incineration) 3.4 3.3 3.2 4.1 4.1 4.0 4073.0 4.7 4.5

Total 1322.5 930.3 559.9 596.0 472.7 368.1 449.1 340.4 254.5

Table 4. Annual emission of particulates resulting from fuel combustion and fugitive emissions from
fuels in the energy sector in Poland in 1990–2020.

Emission Source by NFR Category Particulate Emissions Amount [Gg·a−1]

Year 1990 2010 2020

Anthropogenic Particulates TSP PM10 PM2.5 TSP PM10 PM2.5 TSP PM10 PM2.5

Fuel combustion
Energy industry 714.3 455.4 228.7 28.3 18.0 9.6 9.6 6.3 3.6
Manufacturing

and construction 26.8 25.4 23.6 23.6 22.3 21.0 26.1 24.8 23.5

Transport 13.9 12.6 11.5 19.7 16.0 12.7 20.3 15.4 11.0
Other sectors 307.8 282.9 243.4 371.6 346.8 308.0 236.2 221.1 198.8

Total 1062.8 776.4 507.2 443.2 403.1 351.2 292.3 267.5 236.9

Fugitive emissions from fuels
Volatile emissions from solid fuels 47.0 20.3 2.9 27.3 11.8 1.8 20.3 8.8 1.4
Volatile emissions from the gas and

oil system 0.2 0.1 0.1 0.4 0.2 0.1 0.4 0.3 0.1

Total 47.2 20.4 3.0 27.7 12.1 1.9 20.7 9.1 1.5

An analysis of the presented data for Poland in the years 1990–2020 indicates a more
than twofold decrease in the emission of this PM in all categories (TSP, PM10, and PM2.5).
A strong decrease in PM emissions was observed in the first decade presented here. In the
EU and in Poland, air quality standards are established for two PM fractions, i.e., PM10 and
PM2.5. Their values are given in Table 5.

Table 5. Air quality standards for two PM fractions, i.e., PM10 and PM2.5, in force in Poland and the
EU [22].

Annual Standard
[µg·m−3]

Average Daily Norm
[µg·m−3]

Permissible Number
of Exceedances [−]

PM10 40 50 35
PM2.5 25 - -

On the other hand, the course of annual average concentrations of PM2.5 and PM10 in
the years 2012–2022 in selected cities in Poland is presented in Figures 1 and 2 [23].

The periodic increase or decrease in PM10 and PM2.5 concentrations observed in the
above graphs is mainly related to climatic conditions in the given shorter time periods, i.e.,
primarily to lower outside air temperature (higher heat production required for the DHS
means higher PM emissions), lower wind speed, and lack of rain/snowfall. These factors
are conducive to an increase in PM emissions and concentrations in ambient air [24,25].
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However, the most important in this respect is the observed decreasing trend in PM10 and
PM2.5 concentrations in subsequent years.
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Figure 1. The course of annual average concentrations of particulate matter PM2.5 in selected cities in
Poland in the years 2010–2022.
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Figure 2. The course of annual average concentrations of particulate matter PM10 in selected cities in
Poland in the years 2010–2022.

The exposure of the urban population in Poland to air polluted with PM10 and PM2.5
in 2010–2022 is shown in Figure 3 [23].

The presented Figures 1–3 clearly show that the values of annual average concentra-
tions of PM2.5 and PM10 in selected cities in Poland in the years 2010–2022 drop significantly,
in some cases even two times. Also, the exposure of the urban population to air polluted
with PM10 and PM2.5 has been steadily decreasing in the analyzed period.
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Figure 3. Exposure of the urban population in Poland to air polluted with PM10 and PM2.5 in
2010–2022.

3. System Description

The analysis of the annual emission of PM was carried out for the Siekierki–Warsaw
and Białystok CHP plants, both before and after the installation of the TES.

The Siekierki CHP plant is the largest CHP plant in Poland and the second largest
in the EU. The thermal power of this plant is 2078 MWth, while the electrical power is
625 MWel. The Siekierki CHP plant was launched in 1961. It consists of [3]:

• Block part—each block consists of its own boiler and turbine (number of blocks—3,
electrical power—110 MWel each, thermal power—175 MWth each),

• Collector part—boilers supply a common steam collector, from which steam is directed
to the turbines (total thermal power—669 MWth, total electrical power—170 MWel),

• Condensing turbine with steam extraction (electrical power—125 MWel),
• Water boilers (number of boilers—6, total thermal power—884 MWth).

In turn, the Białystok CHP plant is several times smaller than the Siekierki CHP plant.
The thermal power of this plant is 530 MWth, while the electrical power is 198 MWel. The
Białystok CHP plant was launched in 1978. It consists of [26]:

• 4 steam boilers, including: 2 fluidized bed biomass boilers in blocks 1 and 2 pulverized
coal boilers in blocks 2 and 3,

• 4 turbines: in block 1 with an electrical power of 65 MWel, in blocks 2 and 3 with an
electrical power of 55 MWel each, and a condensing turbine with an electrical power
of 23.15 MWel,

• 2 water boilers with a thermal power of 81.5 MWth each.

Both analyzed CHP plants have TES systems in the form of tanks storing non-latent
heat (network water), where the separation of the supply (hot) network water from the
return (cold) network water is carried out in a natural way through the thermocline layer.

A view of the CHP plant with TES in Siekierki–Warsaw and Białystok is shown in
Figure 4.

The TES at the Siekierki plant was commissioned in 2009. The TES has been integrated
into the DHS by means of discharging pumps (DP)—Figure 5. In turn, the TES at the
Białystok plant was launched in 2011. The TES has been integrated into the DHS by means
of both discharging (DP) and charging (CP) pumps—Figure 6.
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The basic technical parameters of TES in the Siekierki and the Białystok CHP plants
are presented in Table 6 [27].
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Table 6. Basic technical parameters of TES in the Siekierki CHP plant and the Białystok CHP plant.

Parameter Siekierki CHP Białystok CHP Unit

Total tank volume 30,400 12,800 m3

Tank diameter 30 21 m
Tank shell height 43 37 m

Radius of tank dome 45 31.5 m
Insulation thickness 0.5 0.5 m

Charge/discharge flow rate 1250 417 kg/s
Temperature of stored water 98/40 98/40 ◦C

Total weight of the tank
(without insulation) 53,000 33,850 kg

The method of incorporating the TES into the technological system of the Siekierki
CHP plant is shown in Figure 5 [27].

For example, for the Białystok CHP plant (Figure 6), a diagram of the flow of network
water during TES charging with network water with a temperature exceeding 98 ◦C is
presented (the TES system has a charging water temperature control node to a constant
value of about 98 ◦C) [26].

Measurements of PM10 and PM2.5 emissions were carried out at the outlet of the
emitters (the measuring nozzles were located at appropriate heights in the chimney, in
accordance with the applicable standards), using a technique calibrated on the gravimetric
method and equivalent to this method [28]. The DCEM2100 (manufactured by CODEL
Int., Ltd., Bakewell, UK) and FWE200DH (manufactured by SICK Taiwan Co., Ltd., Tapei,
Taiwan) particulate meters used for measurements ensure continuous, automatic measure-
ment of PM concentration in exhaust gases and meet the requirements of EN 14181 [29] and
EN 15267 [30] standards for emission measurement technology in the emitter. These values
were automatically averaged to the daily concentrations of particulates under normal
conditions (273.15 K, 1013.25 hPa) and with an oxygen content of 6% in the exhaust gases.

4. Factors Affecting the Reduction in Emissions of Pollutants

The factors related to the use and operation of TES in CHP plants, affecting the
reduction in emissions of pollutants into the atmosphere generated in the process of
combustion of fuels in boilers, include:
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1. Increase in the operational efficiency of generating units through their stable operation,
with an even thermal load.

2. Covering the peak demand for heat, i.e., the possibility of avoiding the temporary
start-up of peak boilers and their possible shorter operation, to cover the increased
demand for heat by consumers.

3. Increasing the amount of electricity generated in cogeneration, i.e., the possibility of
generating additional electricity in the CHP plant during periods of peak demand and
its high prices.

All three of the above-mentioned energy factors directly translate into lower fuel
consumption in order to generate a certain amount of energy in the CHP with built-in
TES compared to the same CHP without TES. Lower fuel consumption results in lower
emissions of pollutants, which is the so-called ecological effect of the use of TES in CHP.
The first two factors mentioned above have a direct impact on the reduction in the emission
of pollutants resulting from the combustion of fuels in boilers in the analyzed CHP. The
third factor is global in terms of the so-called avoided emissions related to the generation of
additional electricity in the analyzed CHP in the combined process, which means that this
amount of electricity may not be generated in any conventional power plant, the so-called
condensing power plant supplying the national power system.

The impact of the second of the above-mentioned factors on the amount of pollutant
emissions can be taken into account by determining the so-called operational efficiency of
the entire CHP plant.

4.1. Increase in the Operational Efficiency of Units Generating Heat and Electricity

The operational thermal efficiency of boilers may differ significantly from the nominal
efficiency of these units [31]. A decisive role in achieving high thermal efficiency of steam
and hot water boilers is played by the operating time of these units in areas of high efficiency
and at even, stable loads close to the nominal load. Usually, most boilers show a significant
dependence of their efficiency on the current heat output, reaching maximum efficiency
values for heat loads close to the nominal ones. In addition, the operational efficiency of
the entire heat source (CHP, heating plant) is significantly affected by the operating time
and the number of start-ups of peak boilers.

In addition, operating efficiencies may also differ significantly for individual boilers,
depending on the role that a given boiler plays in the technological system of the heat
source, whether it is a so-called basic boiler or a peak boiler. For example, the authors
examining the operating efficiencies of steam boilers in a heating plant for boilers with a
nominal efficiency of approx. 92% obtained operating efficiency values for a basic steam
boiler on average approx. 84.9%, and for a peak boiler on average approx. 76.2%. The
boiler tests were carried out for 18 months, dividing this time period into 44 equal balance
periods. The operating efficiency of the basic boiler ranged from 81.5% to 86.5%, and the
peak boiler from 41% to 87.2% [31].

The results of calculations of the average daily operating efficiency for boiler K7 before
installation (2010) and after installation (2013) of the TES are presented in Figure 7. In 2013,
these efficiencies increased significantly in the vast majority of days, i.e., from a few to even
several dozen percent compared to 2010, which is undoubtedly the result of the installation
of the TES and the operation of the K7 boiler in more stable conditions and with equal heat
output, as well as its continuous operation (a small number of hours of boiler operation in
transient conditions).

Both in 2010 and 2013, the K7 boiler was the basic unit in the technological system of
the CHP plant, generating heat throughout the heating season and operating the highest
number of hours among all CHP boilers in these years.
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Figure 7. Average daily efficiency of boiler K7 in 2010 and in 2013.

4.2. Covering Peak Heat Demand—Fewer Start-Ups and Shorter Operating Time of Peak Boilers

Low operating efficiencies of peak-load boilers are influenced by long start-up and
shutdown times. For this type of power boiler, which is in operation in the Siekierki and
Białystok CHP plants, these times, depending on whether the boilers are currently in hot or
cold reserve, usually range from approximately 100 to 600 min [32]. During the start-up of
up to 600 min and during the shutdown of the boiler from the operation of several hundred
minutes, the boiler operates in unsteady conditions with an efficiency much lower than the
nominal value. After the installation of TES in the CHP plant, the number of start-ups of
peak boilers usually decreases very significantly, which results in the avoidance of peak
heat production with such low operating efficiencies. Ultimately, this results in a reduction
in the emission of pollutants into the atmosphere.

In the analyzed case, the number of start-ups of the peak-load boiler was 25% lower in
the system with TES than in the operation of the CHP plant without the TES [26].

4.3. Generation of Additional Electricity in the CHP Plant During Periods of Peak Demand and
High Prices

Increasing the amount of electricity generated in cogeneration, i.e., the possibility of
generating additional electricity in the CHP plant during periods of peak demand and
its high prices, also has an environmental effect, in addition to the energy and financial
effects. The energy effect is related to the increased energy efficiency of the combined
process compared to the efficiency of the separate heat and electricity generation processes.
It is associated with a corresponding ecological effect resulting from a smaller amount of
fuel burned in order to produce the same amount of energy in the combined and separate
processes. By increasing the amount of electricity produced in cogeneration, the amount
needed to generate electricity in existing condensing power plants, which only produce
electricity, is reduced.

The above-mentioned ecological effects are not the subject of analysis in this paper
and should be the subject of detailed studies at a later stage of research.

5. Results and Discussion
5.1. Determination of the Energy Effect of the Use of TES in the CHP Plant

The preliminary analysis of the environmental impact of the operation of the TES
system was carried out on the basis of operational data for the selected CHP plant for the
years 2008–2009, i.e., before and after the installation of the TES in the Siekierki CHP plant.
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The calculations of the average annual overall efficiency of the CHP Siekierki plant
were carried out in accordance with Directive (EU) 2018/2002 [33] on energy efficiency and
the Regulation of the Minister of Energy of 10 April 2017, which provides an appropriate
formula [34]. The overall efficiency of the plant translates directly into the energy effect.

The results of calculations of the average annual overall efficiency of the Siekierki
plant indicate an increase in its efficiency from 86.6% in 2008 to 87.3% in 2009 [2]. Although
this is not a very significant change (2009 was the implementation year for the TES and
the overall efficiency of the CHP plant was already very high), it is a change that gives a
concrete effect. Significant effects, including economic ones, of the use of TES in the CHP
plant have also been defined in other papers [8,35].

5.2. Comparison of the Emission of PM10 in the Siekierki CHP Plant Before and After the
Installation of the TES

The results of measurements of PM10 emissions in 2008, i.e., in the last year of operation
of the Siekierki CHP plant without TES, and in 2009, i.e., in the first year of operation of the
plant with TES, are presented in Figure 8.
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Figure 8. The relationship between the emission of PM10 into the atmosphere in 2008 and 2009.

The PM10 emission values for the analyzed CHP plant vary on a scale of 24 h, weeks,
and months, and this depends primarily on the volume of electricity and heat production.
These values are also influenced by climatic conditions, because, for example, a decrease
in the temperature of the outside air translates into an increase in heat demand by DHS
consumers [36].

The graph shows a significant decrease in PM emissions in 2009 compared to 2008. This
decrease in particulate emissions is primarily the result of a much smaller number of start-
up peak boilers, as well as stabilized thermal efficiency (operation with practically constant
thermal power) on a daily basis of generating units, i.e., boilers and heat exchangers, which
is the result of the use of TES in the plant. The operation of peak-load boilers is usually
short-lived, and the unstable operating conditions of these boilers at the time of start-up
and at shutdown cause a decrease in the efficiency of particulate removal of dedusting
equipment as a result of highly variable flue gas streams.

When comparing the amount of PM10 emissions to the atmospheric air in 2008 and
2009, the annual volume of energy production in the Siekierki CHP plant, climatic con-
ditions (length of the heating season, outside air temperatures), as well as operating con-
ditions and technical conditions of energy production equipment and flue gas dedusting
installations in these two analyzed years were not taken into account.
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5.3. Comparative Analysis of the Impact of the Use and Operation of TES in the CHP Plant on the
Emission of Pollutants

The basic task enabling the performance of a comparative analysis of the impact of
the use of TES in the CHP plant on the emission of pollutants into the atmosphere is
the selection of the compared years before and after the installation of the TES, so that
these years are characterized by similarity in terms of the volume of electricity and heat
production and climatic similarity, i.e., the selection of such years that will enable the
determination of the objective difference in the emission of pollutants before and after
the implementation of TES in the CHP plant, i.e., choice of “base” and “comparative”
years. An important issue in the selection of these years is the use of the same energy
generation technologies and fuels used for its production, which means that, for example,
even modernization activities in the boiler, increasing its energy efficiency carried out in
the “comparative” year, may to some extent distort the result of this analysis. For this
reason, the analysis should compare these years as closely as possible but characterized
by a similar amount of total heat and electricity production under comparable climatic
conditions (similar values of the degree days). Another issue is the selection of a model
of the spread of pollutants, enabling the use of the same meteorological characteristics for
both compared time periods in terms of parameters entered into the calculation model.

In the presented comparative analysis, the so-called comparative index (CI) was
introduced, which allows for objectification of the results obtained. This indicator includes
both the amount of energy production in a given year and the climatic characteristics of that
year expressed by the annual number of heating degree days. Thus, the CI for the analyzed
years should have a similar value in order for the results of the comparative analysis to be
fully representative.

The comparative index is defined as follows:

CI = (Pe,tot + Ph,tot)/Sd (1)

where
Pe,tot: total production of electricity, GJ
Ph,tot: total production of heat, GJ
Sd: annual number of heating degree days
The values of the CI for the analyzed years for the Siekierki and the Białystok CHP

plants are as follows:
Siekierki CHP plant:

CI (2008) = 10,094 GJ/Sd (2)

CI (2009) = 8830 GJ/Sd (3)

Białystok CHP plant:
CI (2010) = 1531 GJ/Sd (4)

CI (2013) = 1597 GJ/Sd (5)

Thus, the results of the comparative analysis for Siekierki CHP plant are not fully
representative. On the other hand, the CI has practically the same value (the difference
between the indexes is 4%) for the Białystok CHP plant in 2010 and in 2013, i.e., before and
after the installation of the TES.

In view of the values of the CI, only the results of measurements and calculations
for the Białystok CHP plant for the base and the comparative years were presented as
representative results of the analysis.

5.4. Particulate Emissions

The results of measurements of PM10 emissions on individual days of 2010 and in
2013 are presented in Figure 9.
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Figure 9. PM10 emissions in 2010 and 2013.

The results of the measurements clearly show the positive impact of the TES in-
stallation on the amount of PM10 emissions into the atmosphere. The average decrease
in the emission of PM10 in the heating season ranges from 10% to 50%, while in the
summer season, the values of particulate emissions in these two analyzed years are at a
comparable level.

5.5. Quantities of Emission of Particulates

Reference values and limit levels for the analyzed particulates in the air for the Polish
area and periods for which the reference values are averaged are presented in Table 7 [21].

Table 7. Reference values and limit levels for the particulates in the air.

Name of the
Substance

Reference Values in (µg/m3) Averaged over the Period

One Hour Calendar Year

PM10 280 40

PM2.5 - Year 2010 29
Year 2013 26

The maximum values of concentrations in the receptor network in 2010 and 2013 are
presented in Tables 8 and 9, while the Figures 10–13 show the spatial distribution of the
spread of PM10 and PM2.5 in the air, i.e., the maximum concentration values of these
substances averaged for one year and one hour, calculated for the ground level, depending
on the distance from the emitter. Detailed results of the distribution of PM2.5 and PM10
(Figures 10–13) and PM fallout (Figure 14) obtained from the calculation program Operat
FB for Windows ver. 8.8.4 [37] are available in the archive of the corresponding author.

Table 8. Summary of maximum values of concentrations in the receptor network, µg/m3 in 2010.

Particulates 30 min 1 h 8 h 24 h

PM10 14.7 12.6 8.0 6.3
PM2.5 8.8 7.6 4.8 3.8
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Table 9. Summary of maximum values of concentrations in the receptor network, µg/m3 in 2013.

Particulates 30 min 1 h 8 h 24 h

PM10 12.3 10.6 6.7 5.2
PM2.5 7.3 6.3 4.0 3.1
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5.5.1. PM10

In 2010, the highest value of one-hour concentrations of PM10 was 12.6 µg/m3, in
2013: 10.6 µg/m3. No exceedances of one-hour concentrations were found. The highest
value of annual average concentrations was 0.121 µg/m3 in 2010, and in 2013: 0.090 µg/m3.
These values did not exceed the permissible value (Da-R) = 40 µg/m3. Spatial distributions
of PM10 concentrations in the air for 2010 are shown in Figure 10a,b, and for 2013 in
Figure 11a,b.
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5.5.2. PM2.5

In 2010, the highest value of one-hour concentrations of PM2.5 was 7.6 µg/m3, in 2013:
6.3 µg/m3. In 2010, the highest value of annual average concentrations was 0.072 µg/m3

and did not exceed the permissible value (Da-R) = 29 µg/m3, while in 2013 it amounted
to 0.054 µg/m3 and did not exceed the permissible value (Da-R) = 26 µg/m3. Spatial
distributions of PM2.5 concentrations in the air for 2010 are presented in Figure 12a,b, and
for 2013 in Figure 13a,b.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 21 
 

 

(a) (b) 

Figure 11. Distribution of PM10 at ground level in 2013: (a) one-hour concentrations, (b) annual 
average concentrations. 

5.5.2. PM2.5 
In 2010, the highest value of one-hour concentrations of PM2.5 was 7.6 µg/m3, in 2013: 

6.3 µg/m3. In 2010, the highest value of annual average concentrations was 0.072 µg/m3 
and did not exceed the permissible value (Da-R) = 29 µg/m3, while in 2013 it amounted to 
0.054 µg/m3 and did not exceed the permissible value (Da-R) = 26 µg/m3. Spatial distri-
butions of PM2.5 concentrations in the air for 2010 are presented in Figure 12a,b, and for 
2013 in Figure 13a,b. 

  
(a) (b) 

Figure 12. Distribution of PM2.5 at ground level in 2010: (a) one-hour concentrations, (b) annual 
average concentrations. 

Figure 12. Distribution of PM2.5 at ground level in 2010: (a) one-hour concentrations, (b) annual
average concentrations.

Sustainability 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

  
(a) (b) 

Figure 13. Distribution of PM2.5 at ground level in 2013: (a) one-hour concentrations, (b) annual 
average concentrations. 

In 2010, the maximum particulate fallout (not taking into account the background) 
was 2.39 g/m2/year, while in 2013 it was 2.07 g/m2/year. The spatial distribution of par-
ticulate fallout in 2010 and 2013 is shown in Figure 14a,b. 

 
(a) (b) 

Figure 14. Particulate fallout in (a) 2010 and in (b) 2013. 

5.6. Total Annual and Maximum Emissions of PM10 and PM2.5 in the Analyzed Periods 
The total annual emission [Mg] and the maximum hourly emission [kg/h] for PM10 

and PM2.5 determined by the calculation program Operat FB for MsWindows ver. 8.8.4 
[37] are presented in Table 10. 

Table 10. Total annual and maximum emissions in 2010 and 2013. 

Pollutant 
Name 

Annual Emission 
[Mg] 

Reduc-
tion Level  

Maximum Emission 
[kg/h] 

Reduc-
tion Level  

Year 2010 2013  2010 2013  

PM10 92.2 67 27% 15 10.7 29% 
PM2.5 55.1 40.1 27% 8.97 6.4 29% 

The calculations show that the level of reduction in the total annual and maximum 
emissions of PM10 and PM2.5 in 2013 compared to 2010 were at a high level, i.e., about 27–
29%. 

Figure 13. Distribution of PM2.5 at ground level in 2013: (a) one-hour concentrations, (b) annual
average concentrations.

In 2010, the maximum particulate fallout (not taking into account the background) was
2.39 g/m2/year, while in 2013 it was 2.07 g/m2/year. The spatial distribution of particulate
fallout in 2010 and 2013 is shown in Figure 14a,b.
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5.6. Total Annual and Maximum Emissions of PM10 and PM2.5 in the Analyzed Periods

The total annual emission [Mg] and the maximum hourly emission [kg/h] for PM10
and PM2.5 determined by the calculation program Operat FB for MsWindows ver. 8.8.4 [37]
are presented in Table 10.

Table 10. Total annual and maximum emissions in 2010 and 2013.

Pollutant
Name Annual Emission [Mg] Reduction

Level
Maximum Emission

[kg/h]
Reduction

Level

Year 2010 2013 2010 2013
PM10 92.2 67 27% 15 10.7 29%
PM2.5 55.1 40.1 27% 8.97 6.4 29%

The calculations show that the level of reduction in the total annual and maximum
emissions of PM10 and PM2.5 in 2013 compared to 2010 were at a high level, i.e., about
27–29%.

6. Predicting the Possibility of Smog Occurrence

Activities aimed at reducing atmospheric pollution, and in particular two critical
components causing the formation of smog, i.e., PM2.5 and PM10 particles, have a particular
impact on improving people’s living conditions and reducing the number of deaths [38].
One of the methods of reducing the concentration of particulates in the air generated by
CHP plants using fossil fuels or biomass as the basic fuel is the use of TES. The role of TES
in reducing particulate emissions is the possibility of introducing rational control of the
heat source during periods of increased concentration of PM2.5 and PM10 particles in the
air. In periods when there is a high risk of smog, heat should be directed to consumers from
the TES, and the boilers will be out of service, or their load will be significantly reduced
during this time. Anticipating the occurrence of smog, the TES should be fully charged
in the period preceding its occurrence. The boiler control algorithm must be coupled
with a short-term forecasting system in terms of the level of pollutant concentrations in
the atmosphere.

Air quality forecasting models are used to predict conditions conducive to smog.
Most often, these models use a register of historical data on air quality parameters such as:
concentration of PM2.5, PM10, O3, CO, NO2, and SO2 as well as temperature, humidity, wind
speed, and atmospheric pressure. Information about the location of sources of pollutant
emissions in the area, such as industrial plants, temporary traffic intensity (transport), and
natural sources, is also important.



Sustainability 2024, 16, 10926 17 of 21

Air quality forecasting models often use a combination of atmospheric modeling,
machine learning, and data analysis techniques. The effectiveness of forecasting depends
on the availability and quality of input data, the accuracy of measurements, algorithms,
and analysis methods. An important parameter of the effectiveness of models is their
territorial range. Local models have a higher accuracy of air quality forecasting. They
use measurement data from local stations monitoring the concentration of pollutants and
changes in weather conditions in a given area of the country [39,40].

There are many models for forecasting the concentration of pollutants in the air,
including PM emissions, such as:

1. ISCST3 (Industrial Source Complex Short Term Version 3) model [41]: This is one of
the most commonly used models for predicting the concentration of PM from industry.
It takes into account the technical parameters of emission sources, such as the type of
fuel, temperature, and exhaust velocity of flue gases from the chimney, etc., as well as
weather conditions and terrain.

2. AERMOD (Air Quality Model) [42]: This is a model used to predict the emission of
PM, as well as other pollutants such as nitrogen oxides, sulfur dioxide, and others.
This model takes into account both point and linear sources of pollutant emissions. It
uses atmospheric transport equations and takes into account factors such as topog-
raphy, atmospheric conditions, location of emission sources, and characteristics of
exhaust gases.

3. CALPUFF model (California Puff model) [43]: This is a model used to predict PM
emissions and the long-term spread of pollutants in the atmosphere. The CALPUFF
model takes into account the sources of point and diffuse pollutant emissions.

4. TAPM Model (The Air Pollution Model) [44]: This is a model used to predict the
emission of PM and other atmospheric pollutants. The TAPM model takes into
account different types of emission sources, such as industry, transport, domestic
boiler rooms, etc. Forecasting algorithms use data on weather conditions, topography,
and dispersion of pollutants.

The use of TES in CHPs or heating plants and its appropriate operation during periods
of smog hazard and smog occurrence will not eliminate the phenomenon of smog, but it
may significantly reduce its nuisance, including reducing the concentration of air pollutants
and the scale of this phenomenon. Thus, all activities that can lead to the reduction in
smog and its nuisance are highly pro-ecological activities. Such activities also include the
installation of TES in CHPs and heating plants, and the quantification of the potential for
the impact of the use of TES on reducing smog depends on many factors, primarily of a
local nature, and will require further research and analysis.

7. Summary and Conclusions

The presented paper examines the impact of the use and operation of TES built in a
CHP plant supplying a large DHS, based on the amount of particulates emitted into the
atmosphere. Detailed research and quantitative analyses were carried out for two CHP
plants, i.e., Siekierki and Białystok, supplying heat to the DHS.

Through the use of TES in the CHP plant, the reduction in pollutant emissions is the
result of:

- an increase in the operational efficiency of boilers through their stable operation, with
an even heat load.

The presented results of calculations of the average daily value of operating efficiency
for boiler K7 (basic boiler in the Białystok CHP plant) before and after installation of the
TES in the plant on the vast majority of days of the comparative year increased significantly,
i.e., from several to even several dozen percent compared to the base year (Figure 7), which
is the result of the installation of the TES and continuous operation of boiler K7 in more
stable conditions, and with an equalized heat load.
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- covering the peak demand for heat, i.e., the possibility of avoiding the temporary
start-up of peak boilers and their possible shorter operation.

After the installation of TES in the Białystok CHP plant, the number of start-ups for
the peak boiler decreased by 25%.

- an increase in the amount of electricity generated in cogeneration, i.e., the possibility
of generating additional electricity in the CHP plant during periods of peak demand
and high prices. The resulting ecological effects were not analyzed in this study and
should be the subject of detailed studies at a later stage of research.

The volume of the energy effect of the TES installation was calculated for the Siekierki
CHP plant, and it resulted in an increase in the average annual overall efficiency of the
CHP plant in the process of the high-efficiency cogeneration from 86.6% to 87.3%.

In order to objectify the results of the comparative analysis of the impact of TES use in
the CHP plant on the emission of particulates into the atmosphere, the comparative index
(CI) was introduced. The CI for the analyzed years before and after the installation of the
TES in the CHP plant should have a similar value so that the results of the comparative
analysis are fully representative. This condition is met for the selected base and comparative
year for the CHP plant and DHS in Białystok, hence the results of the comparative analysis
are presented for this facility.

Finally, the following environmental effects related to the reduction in particulate
emissions have been achieved, i.e.:

1. the total annual emission of PM10 and PM2.5 decreased by 27% and the maximum
emission by 29%,

2. the average decrease in the emission of PM10 as a result of the use of TES in the heating
season ranged from 10 to 50%, while in the summer season, the values of emissions in
these two analyzed years are at a comparable level,

3. PM10

• The highest value of one-hour concentrations was 12.6 µg/m3 (2010) and
10.6 µg/m3 (2013). No exceedances of one-hour concentrations were found.

• The highest value of annual average concentrations was 0.121 µg/m3 (2010)
and 0.090 µg/m3 (2013). These values did not exceed the permissible value
(Da-R) = 40 µg/m3,

4. PM2.5

• the highest value of one-hour concentrations was 7.6 µg/m3 (2010) and
6.3 µg/m3 (2013).

• the highest value of annual average concentrations was 0.072 µg/m3 (2010) and
did not exceed the permissible value (Da-R) = 29 µg/m3, while in 2013, it was
0.054 µg/m3 and did not exceed the permissible value (Da-R) = 26 µg/m3,

5. Particulate fallout—in 2010, the maximum particulate fallout (not taking into account
the background) was 2.39 g/m2/year, while in 2013, it was 2.07 g/m2/year.

Referring to the particularly burdensome form of the presence of particulates and
other pollutants in the ambient air in the form of smog, it has been proposed to use TES
to reduce the occurrence and nuisance of this phenomenon. It is possible that during the
risk of smog, heat is directed to consumers from the TES, and the boilers should not work
during this time, or their load will be significantly reduced. Anticipating the occurrence
of smog, the TES should be fully charged beforehand. The CHP plant control algorithm
must be coupled with a short-term forecasting system in terms of the level of pollutant
concentration in the atmosphere. Models for forecasting the concentration of pollutants in
the air, including particulate emissions, can also be used in these projects.
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Nomenclature

Pe,tot total production of electricity, GJ
Ph,tot total production of heat, GJ
Sd annual number of heating degree days

Abbreviations

CI Comparative Index
CHP Combined Heat and Power
CP Charging Pump

Da-R
annual permissible concentration of the substance in the atmosphere
decreased by the background concentration

DHS District Heating System
DP Discharging Pump
PM Particulate Matter
TES Thermal Energy Storage
TSP Total Suspended Particulates
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